464 research outputs found

    Insertion loss and misalignment tolerance in multimode tapered waveguide bends

    Get PDF
    Experimental measurements of laterally tapered multimode waveguide bends fabricated photolithographically on FR4 printed circuit board establish that the product of the mean insertion loss (in linear units) and the mean source misalignment tolerance is a constant which depends only on the taper ratio TR (input width/output width) and not on the radius of curvature R. The minimum loss of 0.78 dB occurs in the special case of TR = 0.8, R = 14 mm. Together, these form waveguide layout design rules for board-to-board and chip-to-chip optical interconnects

    Radiation- and Bound-Mode Propagation in Rectangular, Multimode Dielectric, Channel Waveguides With Sidewall Roughness

    Get PDF
    This paper calculates and displays accurate radiation modes for rectangular, multimode dielectric, channel waveguides, for the first time, and introduces the new semianalytical calculation method used to find them, the radiation-mode Fourier decomposition method (RFDM), which is an extension of the Fourier decomposition method (FDM) for finding bound propagating modes. The optimum choice of non-linear conformal transformation parameters is discussed for achieving highest accuracy. Once the radiation modes are known, the coupling coefficients can be found between the bound and radiation modes, as well as those between the bound modes themselves, andhence, the propagation loss can be found. The paper adapts Marcuse's coupled power theory, for the first time, to enable it to model propagation in rectangular, multimode dielectric, channel waveguides suffering from one dimensional sidewall roughness enabling the equilibrium distance to be calculated, at which rate of loss to radiation modes becomes constant, and to find that equilibrium propagation loss, and the dependence on the statistical properties of the wall roughness. This leads to the conclusion that at sufficient distance there exist two uncoupled modes, a symmetric and an asymmetric lowest order mode

    Low-cost, precision, self-alignment technique for coupling laser and photodiode arrays to polymer waveguide arrays on multilayer PCBs

    Get PDF
    The first, to our knowledge, passive, precision, self-alignment technique for direct coupling of vertical cavity surface emitting laser (VCSEL) and photodiode (PD) arrays to an array of polymer buried channel waveguides on a rigid printed circuit board (PCB) is reported. It gives insertion losses as good as the best achieved previously, to within experimental measurement accuracy, but without the need for costly active alignment nor waveguide facet polishing and so is a major step towards a commercially realizable low cost connector. Such an optical connector with four duplex channels each operating at 10 Gb/s (80 Gb/s aggregate) was designed, constructed, and its alignment precision assessed. The alignment technique is applicable to polymer waveguide interconnections on both rigid and flexible multilayer printed circuit boards (PCBs). The dependence of optical coupling loss on mis-alignments in x, y and z of the VCSEL and PD arrays allows the precision of alignment to be assessed and its reproducibility on multiple mating cycles of the connector is reported. The first recorded measurements of crosstalk between waveguides when the connector is misaligned are reported. Lateral misalignments of the connector to within its tolerance are shown to have no effect on the signal to crosstalk ratio (SCR), to within experimental measurement accuracy. The insertion loss repeatability is similar to that of single mode fiber mechanically transferable (MT) connectors

    Uncovering the secrets of the 2d random-bond Blume-Capel model

    Get PDF
    The effects of bond randomness on the ground-state structure, phase diagram and critical behavior of the square lattice ferromagnetic Blume-Capel (BC) model are discussed. The calculation of ground states at strong disorder and large values of the crystal field is carried out by mapping the system onto a network and we search for a minimum cut by a maximum flow method. In finite temperatures the system is studied by an efficient two-stage Wang-Landau (WL) method for several values of the crystal field, including both the first- and second-order phase transition regimes of the pure model. We attempt to explain the enhancement of ferromagnetic order and we discuss the critical behavior of the random-bond model. Our results provide evidence for a strong violation of universality along the second-order phase transition line of the random-bond version.Comment: 6 LATEX pages, 3 EPS figures, Presented by AM at the symposium "Trajectories and Friends" in honor of Nihat Berker, MIT, October 200

    The Hidden Potential of Luminescent Solar Concentrators

    Get PDF
    The luminescent solar concentrator (LSC), originally introduced almost four decades ago as a potential alternative/complement to silicon solar cells, has since evolved to a versatile photovoltaic (PV) solution with realistic potential for seamless integration into the urban architectural landscape. Yet, a popular perception of the device still persists: the LSC is mostly seen as just a low‐efficiency solar panel. This review challenges this outdated notion and argues that the LSC is, to the contrary, a powerful and highly adaptive photonic platform with many more capabilities and potential than only generating electricity from sunlight. The field has seen a rapidly expanding application portfolio over the last few years, with LSCs now considered in various sensing applications, “smart” windows, chemical reactors, horticulture, and even in optical communication and real‐time responsive systems. The main goal of this work is to shed light onto this alternative application space and highlight the LSC's unique spectral manipulation, light distribution, and light concentration properties, and as a result, to encourage the participation from a broader range of disciplines into LSC research with the ultimate aim of stimulating the development of novel, LSC inspired technologies

    Micro-cone arrays enhance outcoupling efficiency in horticulture luminescent solar concentrators

    Get PDF
    Luminescent solar concentrators (LSCs) have shown the ability to realize spectral conversion, which could tailor the solar spectrum to better match photosynthesis requirements. However, conventional LSCs are designed to trap, rather than extract, spectrally converted light. Here, we propose an effective method for improving outcoupling efficiency based on protruded and extruded micro-cone arrays patterned on the bottom surface of LSCs. Using Monte Carlo ray tracing, we estimate a maximum external quantum efficiency (EQE) of 37.73% for our horticulture LSC (HLSC), corresponding to 53.78% improvement relative to conventional, planar LSCs. Additionally, structured HLSCs provide diffuse light, which is beneficial for plant growth. Our micro-patterned surfaces provide a solution to light trapping in LSCs and a foundation for the practical application of HLSCs

    A microscopic investigation of the transition form factor in the region of collective multipole excitations of stable and unstable nuclei

    Full text link
    We have used a self-consistent Skyrme-Hartree-Fock plus Continuum-RPA model to study the low-multipole response of stable and neutron/proton-rich Ni and Sn isotopes. We focus on the momentum-transfer dependence of the strength distribution, as it provides information on the structure of excited nuclear states and in particular on the variations of the transition form factor (TFF) with the energy. Our results show, among other things, that the TFF may show significant energy dependence in the region of the isoscalar giant monopole resonance and that the TFF corresponding to the threshold strength in the case of neutron-rich nuclei is different compared to the one corresponding to the respective giant resonance. Perspectives are given for more detailed future investigations.Comment: 13 pages, incl. 9 figures; to appear in J.Phys.G, http://www.iop.org/EJ/jphys

    Losses in luminescent solar concentrators unveiled

    Get PDF
    A novel experimental method is presented to determine the optical efficiency and the loss channels of a luminescent solar concentrator (LSC). Despite strong promise, LSCs have not yet reached their full potential due to various mechanisms affecting the device's optical efficiency. Among those loss channels, escape cone and non-unity quantum yield losses are generally the most dominant. To further advance the field of LSCs, it is vital to understand the impact of each independently. So far, researchers have only characterized the total loss in LSCs. Here, an experimental method is proposed to separate the contribution from each individual loss channel. The experimental apparatus is the same as used for quantum yield measurements of fluorophores in solid samples. Therefore, the setup is commonly available to research groups already involved in LSC research. The accuracy of this method is demonstrated by comparing the experimental results with Monte-Carlo ray tracing. Our experimental method can have a strong impact on LSC research as it offers a means to unveil the loss channels of LSCs in addition to the optical efficiency

    Impact of curvature on the optimal configuration of flexible luminescent solar concentrators

    Get PDF
    Flexible luminescent solar concentrators (LSCs) could deliver integrated photovoltaics in all aspects of our lives, from architecture to wearable electronics. We present and experimentally verify a model for the optimization of the external optical efficiency of LSCs under varying degrees of curvature. We demonstrate differences between the optimization of flat and bent LSCs, showing that optimal fluorophore concentrations can differ by a factor of two

    An electroabsorption modulator-based network architecture for particle physics applications

    Get PDF
    The forthcoming increase in rate of data production and radiation levels, associated with the transition to High-Luminosity Large Hadron Collider, necessitates a readout link upgrade. Such upgrade is also an opportunity to move to a more efficient network infrastructure through the introduction of new technologies and it is in light of this that we explore the possibility of using a unified optical network architecture based on using Reflective Electroabsorption Modulators at the detector side. We evaluate the performance of the new architecture and investigate the way operating and environmental parameters such as wavelength and temperature affect it
    corecore